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ALGEBRAIC SOLUTIONS OF ONE-DIMENSIONAL
FOLIATIONS

A. LINS NETO & M.G. SOARES

Abstract

In this article we consider the problem of extending the result of
J.P.Jouanolou on the density of singular holomorphic foliations on CP(2)
without algebraic solutions to the case of foliations by curves of CP(n).

1. Introduction and statement of results

A one-dimensional (singular) holomorphic foliation F on CP(n) is
given by a morphism

T : O(~d) —s TCP(n)

with singular set sing(F) = {p : T(p) = 0}. We will consider foliations
with singular set in codimension greater than 1. Such a foliation F
is represented in affine coordinates (z,,...,z,) by a vector field of the
form

d
X =gR+Y X,
£=0

where R is the radial vector field R = 31 :1;1-3—‘35—‘, g is a homogeneous
polynomial of degree d and X, is a vector field whose components are
homogeneous polynomials of degree £, 0 < £ < d. Since sing(F) has
codimension greater than 1 we have either g # 0 or ¢ = 0 and X cannot
be written as AR where h is homogeneous of degree d — 1. In this case
X has a pole of order d — 1 at infinity (see [6]). We call d the degree of
the foliation.

If F is a holomorphic foliation of dimension 1 on CP(n) with singular
set sing(F) and ' C CP(n) is an irreducible algebraic curve, we say
that T" is an algebraic solution of F provided I\ sing(F) is a leaf of the
foliation. We prove the following :
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Theorem 1. Consider the vector fields

n—1
0 0
X5 = ;(xfﬂ - xﬂf)axi +(1 - xnxf)"a‘a
and
X{=uR+X¢  pecC

and let F§, F¢ be the foliations on CP(n), n > 2, represented by X¢
and X? respectively. Then, for d > 2 and n even, F¢ has no algebraic
solution and, for d > 2 and n odd, .7-'5 has no algebraic solution provided
0<|pl<<l.

Theorem II. Let R; denote the space of one-dimensional holomor-
phic foliations of degree d on CP(n), n > 2. For each d > 2, there 1s
an open and dense subset S; C Ny such that if F € &y, then F has no
algebraic solution.

In fact we show that F¢ has no algebraic solution of geometric genus
greater than 0, whether n is even or odd. The necessity to consider
the one-parameter family of vector fields X;f arises from the fact that,

N . n n~1_ .. . . . . .
when n is odd, F¢ has precisely 4——“54——11:1—“%*—1 invariant projective lines.

Also, it’s shown that .7-'5 has no algebraic solution, for any n > 2 and
d > 2, provided 0 <] p {<< 1.

To obtain the results we proceed as follows. The set &y consists
of foliations of ”generic type” with simple linear singularities at iso-
lated points and Theorem I shows that this set is not empty ( the
vector field given in this theorem is just a n-dimensional version of
the example given by Jouanolou in [8]). That’s actually the most in-
volved part of the article. By a foliation F of "generic type” and
degree d > 2 we mean a foliation represented by a vector field as
above and such that (i) at each p € sing(X) we have detDX(p) # 0,
(ii) if {M],..., A2} are the eigenvalues of DX (p) then they satisfy %:—
is not a positive real number for ¢ # j (iii) a finite number of sums of
“residues” (which are rational functions of the A’s), associated to the
foliation at singular points, are not certain positive integers and (iv)
no d + 1 points in sing(X) lie on a projective line. These are sufficient
conditions for the foliation to have no algebraic solutions. A brief expla-
nation of this fact is the following: first recall that if a smooth algebraic
curve is invariant by a foliation on CP(n) then the curve must contain
a singular point of the foliation, for otherwise we get a holomorphic
foliation with a compact leaf, which is impossible. Now suppose we
have an invariant algebraic curve; then (ii) says that this curve can-
not have singular analytic nor smooth tangent branches at each of its
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singularities and also that the number of branches at a singular point
is bounded by n ( Proposition 2.5 ), so we are reduced to considera-
tion of invariant algebraic curves whose singularities, if any, have only
smooth analytic branches no two of which are tangent. In this case we
bring in the Theorem of Baum and Bott [1] and a similar result due to
D.Lehmann [9]. The idea is that certain characteristic classes of bun-
dles associated to the ambient complex manifold and to the foliation,
as well as to invariant submanifolds,”localize” near the singular set of
the foliation, giving rise to residues computable through local data for
the foliation and whose sum give characteristic numbers of these bun-
dles. Condition (iii) means precisely that the sum of residues cannot be
a characteristic number associated to a convenient bundle, thus rulling
out the existence of certain algebraic solutions. Condition (iv) is typical
of the odd dimensional situation and aimed at avoiding the existence of
any invariant linearly embedded CP(1).

In [8] Jouanolou proved both theorems for CP(2) (except that S,
is open). Later the first author reproved both theorems ( adding the
fact that &y is open ) [10], and the arguments of the proofs were based
on residues associated to foliations. More recently the second author
extended both results to foliations on CP(3) and also showed that any
F € Sy has no invariant algebraic surface, although in this case Gy is
just proven to be dense [11].

2. Auxiliary results

We start by recalling the theorem of Baum-Bott as written by Chern
in [2]. Let W be a compact complex manifold of dimension n and £ be
a holomorphic line bundle on W.

A holomorphic section X € I'(TW ® L) is given locally by

” 0
X=) X;—
where z,,...,z, form a local coordinate system in W and X; € I'(L)

are holomorphic sections of £. Suppose the vector field X has only
non-degenerated singularities, that is, if X (p) = 0 then the matrix J, =
( ‘Z—Et(p)) is such that detJ, # 0. Consider the Chern classes of the

virtual bundle TW — £~

e(TW = L71) = (W) + ceea W)er (L) + -+ - + (e (£), 1<k < n
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and let
c(TW—-L1) = S (TW — L71). e (TW — L™

where
a=(a,...,00) o +20+---+na, =n

Then we have the
Theorem 2.1 [2].

(27 -1y ca(%)
/wc (WL =3 52

where the summation extends over all singularities of X.

Let W be a n-dimensional complex manifold, 7 a one-dimensional
singular holomorphic foliation on W with sing(F) a discrete set of points
and V C W a complex submanifold invariant by F with dimcV = m.
For each point p € sing(F) take a coordinate domain ¢ around p with
UNsing(F) = {p} and such that U = VNUisgivenbyy; =--- =y, =0
where (21,...,%Zm,¥1,...,Y,) are coordinates in U, p = (0,...,0) in
these coordinates and m + ¢ = n. Let the foliation F be represented in
U by the vector field

X = ZA(:L‘,y +ZB (.’B,y

where B;(z,0) =0 for 1 < j <g¢. If ¢ € Rley,...,¢,] is a characteristic
class of dimension 2m, J(z) is the matrix (g—i_i(a:, 0)),1 <14,5 <gq, and
if we define

_[e(T@)dzs A -+ Adzm,
Res_’}:‘((p,‘/)p) - [ Al(z,o),... ,Am(zao)

where [...], denotes the Grothendieck residue symbol at 0 then we have,
provided V is compact, the following
Theorem 2.2 [9].

/‘;<p(llv/w) = Z Resz(p,V,p)

pEsing(F)NV

where the integral is over the fundamental class of V and vy, is the
normal bundle of V in W.

Remark 2.3 If a vector field X has non-degenerated linear part at a
singular point p, A\1,..., A, are the eigenvalues of the linear part of X
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at this point and if V is one-dimensional, invariant by X and tangent
at p to the direction associated to A; then, by taking ¢ = ¢; we have

cl(J(m))dmi} _ Zi;éj Ay

Ai(.’ﬂ, 0)

Resx(c,,V,p) = [ T

(see [1] or [5, p. 658] ).

We will also need the following Propositions ( Propositions 2.4 and
2.7 appeared in [11] and a two-dimensional version of Proposition 2.8
appeared in [3], but the proof we give here is more general ):

Proposition 2.4 [11]. Let I' C CP(n) be an irreducible algebraic
curve whose singularities, in case they exist, are such that T' has only
smooth analytic branches, no two of which are tangent, through each
of them. Suppose sing(T') C {p1,...,Pm} and consider the sequence of
blow-ups

CP(n) = Mo(“—lMl(ﬂ—zMz e (ﬂle = M

where M; is obtained by blowing-up M;_, at ;' o --- o w7 (p;). Let
I'™ C M be the proper transform of T'. Then
[ e1lresa) = (n+ DD = x(T) = (0= 1) 3 p)
i=1
where d°(T') is the degree of T', x(T'*) = 2—2g is the Euler characteristic
of T'* and £(p;) is the number of analytic branches of ' through p;.

Let X be a holomorphic vector field defined in a neighborhood U of
0 € C™ and such that X(0) = 0. Let {)\{,...,\,} be the spectrum of
DX (0). An invariant branch for X at 0 is, by definition, a germ of
a irreducible non-constant curve I' through 0 € U such that for each
p € T'\ {0} we have X (p) € T,I'. Then we have the following

Proposition 2.5. Let X, \y,..., A, be as above. Suppose A1, ..., A,
# 0 and that, for 1 # j, —,’EL Z R*. Then X has ezactly n invariant
branches through 0, say BI,J. .., By such that:

(i) By,..., B, are smooth at 0.

(it) For each eigendirection of DX (0), say e;, there is ezactly one
i € {1,...,n}, such that B; is tangent to e; at 0.

(ii1) If B is a invariant branch for X at 0, then B = B; for some j
(as germs at 0).

Proof. Set S = {)\1,...,A,}. The hypothesis imply that DX (0) is
diagonalizable and that for each A; there is a unique eigendirection C.e;,
where e; € C*\ {0}. If I C {1,...,n} , I # 0, we will use the notation
E; for the subspace generated by the set {e; | i € I'}. If I = @ we set
E; = {0}. We need a lemma:
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Lemma. Let £ be a straight line through 0 € C such that {NS =0
and the components of C —{ are A; and A,. Set I, = {j | \; € Ay} for
k = 1,2. Then there are germs of holomorphic submanifolds Wy, k =
1,2, through 0 € C™, such that:

(1) TO(Wk) = EIk7k = 1’2

(2) Wy, is invariant for X,

(3) If X* = Xpw, then 0 € Wy is a singularity of X* of Poincare
type, k = 1,2. Moreover the spectrum of DX*(0) is Sy, = {X; | j € I}

(4) If B is a invariant branch for X at 0, then either B C W; or
B - Wz.

Proof. Let a € C* be such that «.f is the imaginary axis and ¥ =
a.X. Then the imaginary axis divides the spectrum of Y into two parts,
namely S; = {a); | Re(a);) < 0} and S, = {a); | Re(a);) > 0}. One
of these parts, say S, corresponds to I; and the other to I,. Let Y;
be the local real flow generated by Y. It is not difficult to see that
for each ¢ > 0, the local diffeomorphism ¥; : (C*,0) — (C™,0) is
holomorphic and has a hyperbolic fixed point at 0 € C". Moreover,
the stable subspace of DY;(0) is E;, and the unstable is E;,. Let W;
and W, be the stable and unstable manifolds of Y;, respectively. Then
To(Wy) = Ey,, for k = 1,2. On the other hand, since Y; is a holomorphic
local diffeomorphism, the proof of the existence of the local unstable
manifold of [7] ( by the graph transformation ), implies that W; and
W, are in fact holomorphic submanifolds. Let us prove that W; and W,
are invariant for X. Let £' be another straight line through 0 € C, such
that the components of C — £, say A;' and A;’, satisfy 4,'NS = 4, NS
, k = 1,2 (for instance, a small perturbation of £ ). Let 3 € C* be such
that 8¢’ is the imaginary axis and 8A4;" = {z | Re(z) < 0}. If Z = X
and Z, is its local real flow then we have:

(i) Z, and Y; commute ( because Y; = X,; and Z; = Xg,, where Xr
is the local complex flow of X).

(ii) If W,' and W,' are the stable and unstable manifolds of Z, ,
(s > 0) respectively, then To(W,') = E;, = To(Wy), k=1,2.

Now, (i) and (ii) imply that W,' = W, , k = 1,2. Moreover, since
Y; and Z, generate the orbits of the complex flow Xr (considered as a
local R? action), it follows that the orbits of X through points of W,
are contained in Wy, k = 1,2. This implies assertion (2) of the lemma.
Assertion (3) follows from the fact that the spectrum of DX(0)g,, is
AyNS , k = 1,2. It remains to prove assertion (4). Let B be a
invariant branch for X at 0. Let v : (C,0) — (C",0) be a Puiseux’s
parametrization of B. Then it is possible to define a holomorphic vector
field X* on a neighborhood of 0 € C, such that Dy.X* = X o«. This
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vector field X* is of the form X* = z’“u(z)a%, where u(0) #0 and k > 1
(see [4]). Let @ € C*, Y = aX and Y; be as before. If Y* = oX* and

Y is the local real flow associated to Y*, then we must have

Y7 (2) = 77 (Yi(¥(2)))

Let us suppose, by contradiction, that B ¢ W; U W,. Since W; and W,
are the stable and unstable manifolds, respectively, of ¥;, it follows that
if 4 is an orbit of Y¥;* through a point 2y # 0, then:

(a) 4 is not a closed orbit.

(b) é cannot accumulate at 0.

On the other hand J is a solution of the real differential equation
—3—? = az*u(z)
and it’s not difficult to see that:

(¢) If k> 2or k=1 and Re(ou(0)) # 0 then § accumulates at 0.

(d) If £ =1 and Re(au(0)) = 0 then ¢ is closed (if 2, is near 0).

This contradiction implies that B C W; U W,. Since B is irreducible
we must have either B € W, or B C W,. This proves the Lemma.

Let us prove the existence of the branches Bi,...,B,. Let A\; =
pje‘/:T"i, 0 < 6, < 2n. Hypothesis (b) implies that 6; # 0; for i # j,
so we may assume, without loss of generality, that 6; < 6,4, for 1 <
J £ n — 1. For the existence of B;, we take a straight line £ through
0 € C such that £NS =0 and \; , A\;41 belong to different components
of C—¢,say A\; € A; and A\j;; € Ay, where C—£=A, U4, (ifj=n
we take Ajy1 = A1). In this case, if I; and I, are as in the Lemma,
then § € I and j+1 € I,. Let W, and X! be as in the Lemma.
Observe that W, is biholomorphically equivalent to an open set in C¥,
k < n, 0 is a singularity of X' of Poincare type, and \; € S; , the
spectrum of DX'(0). Moreover, it follows from the construction of £
that it is possible to find a straight line ¢ through 0 € C such that
NS =0, and if A] and A} are the connected components of C — ¢/,
then S; N A} = {)\;}. Applying once again the Lemma for X' we get
the existence of Bj;, of dimension 1 and tangent to the eigendirection of
Aj. Now let B be any invariant branch for X at 0. Fix a straight line £
as in the Lemma, in such a way that A; NS # @ and A, NS # O, so that
dimW,; < n and dimW, < n. It follows from the Lemma that either
B C W, or B C W,. Suppose for instance that B C W,. If dimW; = 1,
it’s clear that B is an open set in W}, so we can suppose that in fact
B =W,. If dimW; > 1 we can apply the same argument to show that
B Cc W}, where W} is invariant for X, smooth , and dimW} < dimW;.
It is clear that after repeating this argument a finite number of times



ONE-DIMENSIONAL FOLIATIONS 659

we will get B C W}, where W} is invariant for X and dimW} = 1. On
the other hand, it follows from the construction of B, ..., B, and from
the above argument that W} = B; for some j. Therefore B C B; for
some j, which implies that, as germs of curves, we must have B = B;.

In particular we have the

Corollary 2.6. If X and \y,...,\, are as in Proposition 2.5, then
X has no invariant singular branch at 0 € C".

Let us consider now a one-dimensional singular holomorphic foliation
F on CP(n) with sing(F) a finite set of points and such that if X, is
a vector field representing F in a neighborhood of p € sing(F) then
p is a non-degenerated singularity of X, and further, the eigenvalues
Aty .-y A of DX, (p) satisfy

Aq

+ .
AJ ¢R ,Z#]

Let I' ¢ CP(n) be as is Proposition 2.4 and suppose I is invariant by
F. For each p € sing(F) NI let B, denote the set of analytic branches
of T through p and note that since I is invariant by F, if p € sing(T)
then p € sing(F). We have the

Proposition 2.7 [11]. The following equality holds :

> Y Resp(c, B,p) = (n+ 1)d(T) ~ x(™)

pEsing(F)NI BEB,

Let ' € CP(n) and F be as in Propositions 2.4 and 2.7, let F have
degree d and for each p € sing(F)NT let £(p) be the number of analytic
branches of I"' through p. Then

Proposition 2.8.

x(I™) = ( > f(p)) —(d—1)d’(T)

pEsing(F)Nr

Proof. Choose a hyperplane H,, such that sing(F) NI Cc C* =
CP(n)\ Hy, H,, intersects I’ transversely and the foliation F is repre-
sented in C™ by a vector field X which has a pole of order d — 1 at H,,.
Blow-up CP(n) at each point p € sing(F) NT and obtain a manifold
M as in Proposition 2.4. Let X* be a lifting of X to M. Then X*
induces a meromorphic vector field on the strict transform I'* of I, say
V, with the following properties:

(l) V has Zpesing(.’F)ﬂF e(p) Zeros. ‘

(ii) V has d°(T") poles of order d — 1, corresponding to the d°(T)
intersections of H,, with I'.
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Let £ denote the pull-back to I'* of the bundle [H,] by the blow-up

mapping ,
T : M — CP(n). Applying Theorem 2.1 to the section V € I'(TT*®
£2(4-1) we have

fLa@r e = [ ae)+@-n [ a)
= x(I™) + (d - 1)d’(T)

and

[a@r-@eenT - 5 - 5 )

g€sing(V) pEsing(F)Ar

and the result follows.

_‘ 3. Proof of Theorem I
Recall the vector field

n—1

9 d
X§=>(zl, —zzD)z—+ (1 —zpzd)— , d>2
0 ; +1 o e

The foliation F¢ defined by X¢ in CP(n) has no singularities at infinity,
as is easily verified and the singular set sing(F¢) consists of

D=d"+d" '+ ---+d+1

_ points p; = (Z14,...,%n;), 1 <1 < D. In fact, the singularities are

given by the roots of
$z11"+d"—1+---+d+1 -1

with
Ty =a7¥ 0T 0<j<n -2

So that, if £ is a primitive root of unity of order D then
. i oe—i(dt g —i(d? —1i ;
szng(]:g)z{piz(f’g (™ +d)>~°'a£ “ +d)7£ d): ISZSD}

Remark 3.1. Let [ay,...,0n41] € PGL(n + 1,C) denote the class of
the matrix diag(ay,...,0n1) and H C PGL(n+ 1, C) be the subgroup
consisting of the elements [ay, ..., an41] which satisfy
d

< (87
, 1<i<n-1, L=l g>2

d
@ O
d d
Qg1 Qo Cny1 a;
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Then, it’s easy to see that the group H is cyclic of order D and generated
by the class of

6,6~ T kD) e=(@+d) g q)

where £ is a primitive root of unity of order D and moreover, H acts
freely and transitively on sing(Fg).

If p;(\) denotes the characteristic polynomial of DXZ(p;) where p; €
sing(Fg), then a calculation shows that

pi(A) = (A +28)" +ded (A +22)" + Y dz P+ ot )n

1=2
Since z,; = £ put t = A + £ to get
pit — &N =" +d(t — "+ 2 - N+ A= A

Set ¢ = d_aé—_)\i and this polynomial becomes (up to a multiplicative
constant): ‘
G G T |
Hence, if w is a primitive root of unity of order n + 1, then the
spectrum of F¢ at p; is

spec(Fg,pi) = {Ai = (-1 +dw’)¢?: 1<j<n}

Lemma 3.2. Ifd > 2, then all singularities of F¢ satisfy the hypoth-
esis of Proposition 2.5.

Proof. To see this note that if p; € sing(Fy) and A}, X} € spec(F§, p:),
j # k we have

AN —14do*
A 1+ dwi
and that the numbers —1 + dw’ lie on a circle of radius d > 2 centered
at —1. Hence, if \
-1+ dw
—14dw a€R
then a < 0. .

Proposition 3.3. Suppose I' C CP(n) is an irreducible algebraic
curve of genus g > 0 whose singularities, in case they exist, are such
that T' has only smooth analytic branches, no two of which are tangent,
through each of them. Then T cannot be an algebraic solution of Fg.

Proof. If p € sing(T) then p € sing(F¢) NT and note that sing(Fg)N
I' # @ for a holomorphic foliation on CP(n) has no compact leaf ( see
[8]). So let

sing(ff)ﬂ]f‘:{ql,...,q,v}, 1<N<LD
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and
B(q,')={B;-,...,B:(i)}, ].S'I:SN

denote the set of analytic branches of I' through ¢;. By Proposition
2.5 and Lemma 3.1 we have that such a branch is necessarily smooth
and tangent to the direction associated to an eigenvalue of DX¢(g;) and
7(1) < n. Let us say that Bfn is tangent to the direction associated to
A = (=1 + dwi)¢%“. By Remark 2.3 we have

) AT
Res]-"‘ (cla B:n,7 Qi) = _z:k;é:—,-"k
° Ajm
and '
X ford ~1 + dwim
Now

Z(—1+dw’°)=—(n—1)+d(2 w’°> = —(n+d—1) - dw'

k#jm k#jm
~(n+d) +1—dw'™

so that
) —1 + dw* n+d
R Bu@) = )t = Tt g
esfg(cla m7q) kZ —1 + dwim + 1 — dwim
Fim
and i
Resza(c, Ty q;) = Z Res]:g(ChB:in)
B} €B(q¢:)
hence
r(1) ()
n+d

(1) Resgg(cr,Tyq:) =) (—1 + m) = Z 1 —dem

m=1
By Proposition 2.7
Z Resgze(c1,T,q:) = (n+ 1)d°(T) — x(T™*)
qi

where the summation extends over all points g; € sing(F¢) NT and by
Proposition 2.8

(2) x(I) = (E T(i)> ~ (d - 1)d’(T)

qi
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which gives

(3) >_Reszg(cr,T,q:) = (n+d)d°(T) — Y _r(3)

gi qi

Combining (1) and (3) we get

so that

(4) ZZ 1_ T

and from (2) we deduce
2q T —x(T%) _ ¥q () —2+29
d—1 d—1

where ¢ is the genus of I'™*. Now observe that

(5) d(T) =

|1 —dw'™ |>d—1
because 1 < j,, < n and then w’= # 1. Hence

1 < 1
[1—dwin | ~d-1

and from (4) we get

(6) () <

Now, if ¢ > 0 (5) and (6) imply
2B —2429 3, r(d)
- >
d—1 2 5o > 4m
a contradiction which proves the Proposition when g > 0.

It remains to consider the case g = 0. If { is a point in the unit circle
then its complex conjugate is (. From (4) we have

(7) d(T) =

(%)

1
0=%3 ()
(i)
2 — d(aﬂ"'+w im) )
=X (Casaryra

¢ m=l1
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Write w’™ = ¢;,, ++/—1s;,, so that w/™+w™im =2¢; and ~1<¢; <1
Then

r(3) (i)
_ 2 — 2dc;, ) dc;.,
’§;(1—2dc,-m+d2 qzmzll—2dc, + d?
Let us consider the function f : [-1,1] — R given by

1—td
O =1—gra 942

Its derivative is

—d(d®-1)
) = — 22— <0, Vie[-1,1
e (1 - 2td +d?)° =L.1]
and f attains its maximum at ¢ = —1 and f(-1) = 35 +1 Hence
7(3) .
1-— dc]m < 1 z z dc] < Eq; T'(Z)
1= 2de,, +& ~d+1 — m11~2d +&# = dt1

and since x(I'*) = 2 it follows from (2) that

® om=Zg02 ) = L) <d+1

and this gives

Zq; 7'(7;) - 2 < 1

d—-1 —
so that we have CP(1) linearly embedded in CP(n) and a solution of
FZ. Recall that by Proposition 2.8 we have

(10) > r(@) =x(CP1) + (d—1)d°[) =2+d-1=d+1

q:

(9) () =

so that sing(FZ)NCP (1) consists of precisely d+1 points. In this case we
must consider the one-parameter family of vector fields X;f = pR+ X¢,
1 € C and the associated family .7-';} of foliations on CP(n). We have
the following

Lemma 3.4. A CP(1) linearly embedded in CP(n) meets sing(Fg)
in d + 1 points if and only if n is odd. Moreover, for 0 <| p |<< 1,
sing(F2) does not have d + 1 points aligned.

Proof. Suppose we have a CP(1) linearly embedded and such that

CP(].) N S'Lng(]:g) = {qla" . ,Qd-}-l}
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Acting by H (see Remark 3.1) we may assume ¢; = (1,...,1) and write
g = (zi,...,27% for 1 <i<d+1 where z is a root of unity of order
D and z; # z; for i # j. Then there are complex numbers ¢; such that

¢ +tilg — q1) = @, 2<i<d+1

and this gives, looking at the first and at the last coordinates of these
points

1+t;',(252—1)=25i, 1+ti(2’2_d—1):2!i—d
Eliminating ¢; and taking conjugates we get
(x) z(l+z+-+28N)=2z(0+2z+-+2F") 2<i<d+1

Consider the polynomial Q(T) = T? + --- + T — a where a = 2z, +
z5+ -+ + 2. From (x) we deduce Q(T") = (T — z3)...(T' — z441) and
a = (—1)%"1z ... 241 so that | @ |= 1 since z; is a root of unity. By (*)

|z —1] _

= =1
|Zi—1| Ial

which is equivalent to

|t =1l=|z—1], 2<i<d+l

Now, for each i this implies that either 2¢ = z; or z¢ = z; ! since z; is a

point on the unit circle. If we had z¢~! = 1 for all 4 then from (x) we
would have z, = -+ = 2441 = «, a contradiction. If for i # j we had
z{' =1 and 2{™" = 1 then from (*) we would have z; = —1 = «, so that
z? = 1 and hence 2™ = 1. It’s enough to consider the case zI*' = 1 for
all 7. But then d+1 divides D = d"+d" ! +---+d+1 and this happens
if and only if n is odd. Note that this argument shows that sing(Fg)
cannot have £ points aligned if 2 < £ <d+1lorifd+1<£<D.

Now let ¢ be a primitive root of unity of order d + 1 and let n be an
odd integer. Then the points ¢; € sing(FJ) do all lie on a projective
line in CP(n) where

qiz(giJ]'SQi?"'?lﬁgi) OSZSd

Now, if o is as above and n is odd then it’s easily seen that the
projective line parametrized by

Lity=(1+te—-1),1,1+t(e—-1),...,1,1+t(e—-1)) teC
is invariant by X¢ and therefore an algebraic solution of 7§. As a matter

of fact, acting by the group H ( Remark 3.1 ) it’s immediate that there

are
d"+dt+ -+ d+ 1

d+1

d*+d* 2+ P+ 1=
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invariant projective lines, where n = 2k + 1.

It’s worth remarking that the direction of such a projective line at
a point p; € sing(Fg) is precisely the eigendirection associated to the
eigenvalue A} = (=1 + dw?)£* with w? = —1.

To show that these are not persistent we must bring in the perturbed
vector field

X!=pR+X{ pecC

So let’s consider some facts about the foliation F, for 0 <| p |[<< 1.
Its singular set sing(F?) consists of D =d" +d* " +--- 4+ d+ 1 points
Pip = (Z14ps--+1Zn,i,) and clearly these depend holomorphically on p
for | p | sufficiently small. The coordinates of p; , are given by

—(d*+--+1
Tn—tip = (33‘11‘1',;; ~ 1) ( ) 0<e<n—-1

in particular

D—d*
(%) Trin(@le, —p) =1

Differentiating (%), we get

():1)2 D—-d" D —dr
B —~(d— - —i{d— .
a;(ﬂfl,i,u)m:o = ( 5 ) ziie D = (T) g~ 1<i<D

where ¢ = 1, £ primitive.
Let us now return to the invariant projective lines for F¢. Again, by
considering the group #, it’s enough to show that the line

Lt)=(1+tle—1),,1+t{o—1),...,1,1 +t(p— 1))

where p is a primitive root of unity of order d + 1 and n is odd is not
persistent. This invariant line contains the points

qi,0=(9i>1,9ia"'71agi) OSZSd

Let ¢;, € sing(F) denote the points arising from the g;o. If the pro-
jective line persisted then we would have

t2(q1, — Qo) = G2 — Qoo

which gives ¢, as a holomorphic function of x. Now, by considering
the first and the last coordinates of the above equation, eliminating %,
differentiating with respect to x and evaluating at p = 0 ((using (%), )
we get

(0" —~1)(o~1)+(D~d")(e* —1)* = (D—d")(¢* ~1)(e—1) + (¢* — 1)°
and this holds if and only if either n =1 or d = 1.
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Hence, for n > 1, d > 2 and 0 <| p |<< 1, sing(F;) does not have
d + 1 points aligned.

Proposition 3.5. Ifn >2,d > 2 and 0 <| p |[<< 1, then F} has
no algebraic solution.

Proof. First note that since the eigenvalues of .7-"5 at a singular point
depend holomorphically on p then, for | 4 | sufficiently small, all singu-
larities of .7-"3 satisfy the hypothesis of Proposition 2.5.

So assume that I', is an irreducible algebraic curve whose singular-
ities, in case they exist, are such that I', has only smooth analytic
branches, no two of which are tangent, through each of them. Suppose
I, is invariant by }'ﬁ. Let us run through the proof of Proposition 3.3
again. By (1) and (3) of Proposition 3.3 we have

r{1)
+d
Z Res]—'ﬂ(claru7Qi,u) = E ( 7’) + Z - ) ]m) 6(/1‘)

Qi p Qi,p

= (n+d)d(T,) = Y_r(3)

Qi p

where © is a holomorphic function of u. This gives

1 &) ntd
) =5 (@W L2 r_zr)
Qi p M

There are two possibilities, namely

(i) © is not constant as a function of y.

(ii) © is constant as a function of x (in this case © = 0).

In the first possibility, d°(T,) cannot be a positive integer for u close
to 0 and g # 0, a contradiction. In the second possibility we repeat
the arguments in the proof of Proposition 3.3 and the result follows for
g > 0. Now, if g = 0, then (9) and (10) imply that there are d+ 1 points
aligned in sing(flf), and this contradicts Lemma 3.4.

This finishes the proof of Theorem 1.

4. Proof of Theorem 11

Let R, denote the space of one-dimensional foliations on CP(n) of
degree d > 2 and let 5 C R, be the set of non-degenerated foliations of
degree d , i.e. , foliations with non-zero eigenvalues at each singularity.

Remark 4.1. Note that by Theorem 2.1 such a foliation has precisely
D=d"+d" '+ .- +d+1 singularities. In fact , by taking oy =--- =
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an1 =0, a, =1 and L the hyperplane bundle in CP(n) we have

(CP(n) — (L") = ("“) _1y =
Jypg P =" =32 (P )=
detJ,

detJ,

where the summation extends over all singularities of the foliation.

The proof of Theorem II runs as follows. First we show that Z; is
open, dense and connected in ®,;. Then we show that Z;*, the subset of
Zq4 consisting of those foliations whose singular set does not have d + 1
points aligned and whose linear part at each singularity has distinct
eigenvalues, is also open, dense and connected in N;. Next we prove
that the eigenvalues of the linear part of a foliation in Z;*, at a singular
point, can be defined locally as holomorphic functions of the foliation.
Then we consider the condition on the eigenvalues, namely ;—J ¢ Rt,
and show that the subset of Z;* consisting of the foliations which satisfy
it, is open, dense and connected. Finally we treat the conditions on the
residues and, by using the arguments in the proof of Proposition 3.3,
we define 8 in a neighborhood of }"‘f. It’s worth to point out that, in
order to define G, it’s enough to say what is 8, in a neighborhood of
‘7:3’ for n > 2 and d > 2, and then use a simple argument of analytic
continuation.

The next lemma is a straightforward generalization of Lemma 5 [10],
so we omit the proof.

Lemma 4.2. =, is open, dense and connected in Ny. Moreover,
given Fo € B4 with sing(Fo) = {p1,.-.,pp} there are neighborhoods U
of Fo in Rq, V; of p; in CP(n) and analytic functions ¢; : Uy — V;,
j=1,...,D such that V,NV; =0, i # 5 , and for any F € Uy, 9;(F)
is the unique singularity of F in V;.

Given Fy € By let Uy and ; : Uy — V; be as in Lemma 4.2 and
consider the maps

=d"+d" +- o +d+1=)

W, Uy — C” j=1,...,D
defined by
Ui (F) = (trooF (F,95(F)), .. -, tr A"Ou F(F, ;(F)))

The components of ¥; are the elementary symmetric functions of the
eigenvalues of the linear part of F at ;(F). If we let A denote the
discriminant variety of monic polynomials of degree n, then the linear
part of F at 1,;(F) has a repeated eigenvalue if and only if ¥;(F) € A.
Since, by Theorem I, there exists F € Z; whose linear part at each
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singularity has distinct eigenvalues and =, is open and connected, we
have that ¥,;7'(A) is an analytic subset of 4 of codimension > 1,
j=1,...,D. Also, it’s immediate that the foliations whose singular set
has d + 1 points aligned form an analytic subset of Uy of codimension
> 1. Hence, if ;" C E; is the subset consisting of foliations not having
d+1 points aligned and whose linear part at each singularity has distinct
eigenvalues, then =;" C R, is open, dense and connected.
Let

v:C"— C"
(Al,...,An) — (0'1,...,0'11)
where o;, 1 = 1,...,n are the elementary symmetric functions of

ALy .-y An and
D={(A,...,A) €C":F 1<i,5<n, i#7 A=N\}
Then
Yemp : C*T\ D — C*"\ A
is locally biholomorphic. Given F, € =, choose a neighborhood W; C
C" of ¥;(F,) in which a local inverse §; of 7 is defined and let U™ C
Uy NE,;" be an open and connected set such that ¥,;(U*) C W; , for
j=1,....D.
Define
S, : U — C” ;=650 Wi
Then
@;(F) = (M(i(F)) 5+ Aalth; (F)))
where \;(¢;(F)) , i = 1,...,n are the eigenvalues of the linear part of
F at ;(F).
First we consider the condition i‘_; ¢ R+,
Let
pir:C"—C 1<i#£k<n

be defined by
Pik( ALy -y An) = —
and consider the composites
piro®; Uy —C 1<i#k<n, 1<j<D
Then
S={Fely”: Re(piro®;(F)) >0, Im(piro®;(F)) =0, Vijk}

is such that
W=U*\S
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is open, dense and connected in U,*. Observe that if ¥ € W and F
admits an algebraic solution then such a curve has only smooth analytic
branches through each of its singularities, by Proposition 2.5.

Let us treat now the condition on the residues.

Put
ka1 (95 (F))

Ai(;(F))

A(F) =

Then
A;(J:) = RCS]:(Cl,’I:,’l,b]'(j:)) +1
where Resx(cy,%,1;(F)) denotes the residue of F at 1;(F) in the di-

rection associated to the eigenvalue X;(y;(F)). Let Sp be a subset of
{1,...,D} and for j € Sp let 1 < 7(j) <n. Then

() m(J)
ZA;‘.(JE) =r(j) + _ZResf(cl,i,wj(f))

i=1

Now , given F, if there exists a curve I' C CP(n) invariant by F we
would have, by Proposition 2.8,

x(T*) = 3" r(j) - (d - 1)d°(T)

JESD
and by Proposition 2.7
r(j)
> > Resg(cr,i,%;(F)) = (n+1)d*(T) — x(I™*)
jE€Sp i=1 :

Combining these two equalities we get

7(j)
Z ZRCSF(Clai;¢j(f)) = (n + d)do(r) _ Z T(j)
= JjESD
so that
(j)
Z ZA;(f) = (n+ d)d®(T)
jESp i=1
where d°(T') = (EJ'ESDdr_(-I))—Z-{-Zg.

Let G, denote either F§ in case n is even or FY, where  is chosen in
such a way that ¥ has no algebraic solution.
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It was shown in Theorem I (propositions 3.3 and 3.5) that
> ieso Y A%(Gq) is never a positive integer of the form (n + d)3,
where 4

(Sieso i) =2+29

A= d—1

Zt, 1<) r(G<nD, g>0

JjESD

and, by (8) (see the proof of Theorem I), this sum is n + d if, and only
if, g = 0, and this gives 3,5, 7(j) = d+ 1 and there are precisely d+ 1
singularities aligned, which is not the case.

Define a configuration C to be a pair (Sp,r), where Sp # 0 is a
subset of {1,...,D} and r is a function r : Sp — {1,...,n}. To each
configuration C associate the set Z(C) C C defined by

(EjeSD T(])) —2+2g .
d—1 ’

Z(C) ={(n+4d) geZ"}

where C = (Sp, ).
Let W be the neighborhood of G, obtained above. For each configu-
ration C, the holomorphic function

AY
jE€Sp i=1 W
is such that
ec(gd) cC \ Z(C)
Therefore, the same holds for any F in a neighborhood N(C,G,) of G4
in W. Since the number of configurations is finite we let

W, = ﬂCN(C, Ga) TW

where the intersection is taken over all configurations. It remains to
consider the case of invariant projective lines. Given a configuration C,
look at

(®C)|W1 : W1 — C
It follows from (9) in the proof of Theorem I that
Re((©c)yy, (Ga)) < +d
If (©c)y, = n +d then (10) in the proof of Theorem I implies that

there are d + 1 singularities aligned, which does not hold in E;*. If this
function is not constant, then (©¢);), can never be an integer of the

form (n+d) whith Z* 5 § > 2 in a neighborhood W, of G, and, those
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F in this neighborhood, if any, for which this function equals n + d do
not have d + 1 singularities aligned. We let

%an:W2

Now, using the fact that Z;* is open, dense and connected, a simple
argument of analytic continuation shows that $; is open and dense.
Theorem 1I is proved.
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